

Reaction-to-fire test report

Test standard: AS 1530.1:1994 (R2016) Test sponsor: Melbourne Acrylic Coatings Victoria Pty Ltd Product: MAC Hi-Build render Job number: RTF200350

Test date: 6 and 9 November 2020 Revision: R1.0

Warringtonfire: accredited for compliance with ISO/IEC 17025 - Testing

warringtonfire Proud to be part of @ element

Quality management

Revision	Date	Information about the report								
R1.0	20 November 2020	Description	Initial issue.							
			Prepared by	Reviewed by	Authorised by					
		Name	Atousa Aris	Choose an item.	Tanmay Bhat					
		Signature	A. Asis		Har :					

Contents

1.	Introduction	4
2.	Test specimen	4
3.	Test procedure	5
4.	Test measurements and results	5
4.1 4.2	Test observations Combustibility	6 6
5.	Application of test results	6
5.1 5.2	Test limitations Uncertainty of measurements	6 6

warringtonfire Proud to be part of @ element

1. Introduction

This report documents the findings of the reaction-to-fire properties of MAC Hi-Build render tested in accordance with AS 1530.1:1994 (R2016). The testing was undertaken on 6 and 9 November 2020.

Warringtonfire did the test at the request of Melbourne Acrylic Coatings Victoria Pty Ltd listed in Table 1.

Table 1Test sponsor details

Test sponsor	Address
Melbourne Acrylic Coatings Victoria Pty Ltd	196-200 Hammond Road Dandenong South VIC 3188 Australia

2. Test specimen

The description of the specimen in Table 2 has been prepared from the information provided by the test sponsor, unless otherwise specified. Table 3 provides details of the specimen geometry.

Warringtonfire was not involved in sampling or selecting the specimens. All measurements – unless indicated – were measured by Warringtonfire.

Table 2Product description

Item	Detail
Product	MAC Hi-Build render
General description	The material was composed of HE (high early strength) class portland cement, re-dispersible polymer powders, graded sands, perlite and workability admixtures.
As received density	1,540 kg/m ³
Density after conditioning	1,510 kg/m ³
Colour	Off-white
Photograph of specimen	

Table 3 Specimen geometry

Parameter	Unit	Specimen number							
		1	2	3	4	5			
Diameter	mm	44.5	44.3	44.5	44.3	44.3			
Height	mm	49.8	50.0	50.4	50.4	49.8			
Volume	cm ³	77.5	77.1	78.4	77.7	76.8			

3. Test procedure

Table 4 details the test procedure for this reaction-to-fire test.

Table 4Test procedure

Item	Detail
Statement of compliance	The test was performed in accordance with the requirements of AS 1530.1:1994(R2016).
Variations	A suitable alternative insulating material was used to fill the annular space between the furnace tubes, as specified in clause 4.2 of ISO 1182:2010. During the tests of specimen 2, 3, 4 and 5, the thermocouples did not reach equilibrium. The tests were ended after 3600 seconds as described in section 7.4.7 of ISO 1182:2010.
Pre-test conditioning	The specimens were conditioned inside a ventilated oven maintained at a temperature of 60 ± 5 °C for 21 hours. The samples were then cooled to room temperature in a desiccator until immediately prior to testing.
Number of tests	Five
End of test	Out of the five specimens, only one reached equilibrium at 3600 s. All remaining tests were ended after 3600 seconds – as described in section 7.4.7 of ISO 1182:2010.
Test operator	Atousa Aris

4. Test measurements and results

Table 5 shows the summary of observations and calculations of the material samples.

Parameter	Symbol	Unit			Results			Arithmetic
			1	2	3	4	5	mean = ∑results/5
Cumulative total of duration of flaming (> 5 s)		S	0	0	0	0	0	0
Test duration		S	3600	3600	3600	3600	3600	3600
Specimen mass	3							
Initial	m _{si}	g	114.6	115.0	114.4	116.6	112.3	
Final	m _{sf}	g	103.6	104.2	103.8	104.9	101.6	
Mass loss	$\Delta m = [(m_{si} - m_{sf})/m_{si}] \times 100$	%	9.6	9.4	9.3	10.0	9.5	9.6
Furnace thermo	couple temperatures							
Initial	T _{fi}	°C	752.8	753.7	753.7	752.6	753.6	
Maximum	T _{fm}	°C	774.5	776.6	777.0	780.3	773.4	
Final	T _{ff}	°C	772.0	774.6	775.4	778.7	772.0	
Temperature rise	$\Delta T_{f} = T_{fm} - T_{ff}$	°C	2.5	2.0	1.6	1.6	1.4	1.8
Specimen centre thermocouple temperatures								
Maximum	T _{cm}	°C	748.9	747.1	734.2	751.9	694.6	
Final	T _{cf}	°C	748.8	747.0	734.2	751.8	691.4	
Temperature rise	$\Delta T_{c} = T_{cm} - T_{cf}$	°C	0.1	0.1	0.0	0.1	3.2	0.7

Table 5 Test results

Parameter Symbol					Results			Arithmetic
			1	2	3	4	5	mean = ∑results/5
Specimen surface	Specimen surface thermocouple temperatures							
Maximum	T _{sm}	°C	794.7	793.1	798.6	796.7	796.1	
Final	T _{sf}	°C	794.5	792.7	798.5	796.5	795.9	
Temperature rise	ΔT_s = T _{sm} - T _{sf}	°C	0.2	0.4	0.1	0.2	0.2	0.2

4.1 Test observations

Observations of any significant behaviour of the specimen during the tests are summarised below.

- Specimens discoloured during the first 20 minutes of being inserted into the furnace and changed back to its original colour as the test progressed.
- There were cracks on the specimens after the test.

4.2 Combustibility

The material is not deemed combustible according to the test criteria for combustibility specified in clause 3.4 of AS 1530.1:1994 (R2016).

A comparison between the failure criteria and the corresponding results determined from testing is presented in Table 6.

Table 6 Summary of results

Combustibility Performance Criteria	Measured value	Unit	Result
Mean duration of sustained flaming > 0 s	0	S	Pass
Mean furnace thermocouple temperature rise ΔT_{f} > 50 $^{\circ}C$	1.8	°C	Pass
Mean specimen surface thermocouple temperature rise ΔT_s > 50 °C	0.2	°C	Pass

5. Application of test results

5.1 Test limitations

These test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test and they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use.

Any significant variation with respect to size, construction details, loads, stresses, edge or end conditions is not addressed by this report. Any differences in composition or thickness of the product may significantly affect the performance and will therefore invalidate the test results. It is recommended that any proposed variation to the tested configuration should be referred to the test sponsor. The test sponsor should then obtain appropriate documentary evidence of compliance from Warringtonfire or another accredited testing authority.

The supplier of the product is responsible for ensuring that the product which is supplied for use is identical to the specimens that were tested.

5.2 Uncertainty of measurements

Because of the nature of reaction-to-fire testing and the consequent difficulty in quantifying the uncertainty of measurements obtained from a reaction-to-fire test, it is not possible to provide a stated degree of accuracy of the result.

warring to be part of element

Warringtonfire Australia Pty Ltd ABN 81 050 241 524

Perth

Unit 22, 22 Railway Road Subiaco WA 6008 Australia T: +61 8 9382 3844

Sydney

Suite 802, Level 8, 383 Kent Street Sydney NSW 2000 Australia T: +61 2 9211 4333

Canberra

Unit 10, 71 Leichhardt Street Kingston ACT 2604 Australia T: +61 2 6260 8488

Brisbane

Suite 6, Level 12, 133 Mary Street Brisbane QLD 4000 Australia T: +61 7 3238 1700

Melbourne – NATA accredited laboratory

409-411 Hammond Road Dandenong South VIC 3175 Australia T: +61 3 9767 1000

General conditions of use

The data, methodologies, calculations and results documented in this report specifically relate to the tested specimen/s and must not be used for any other purpose. This report may only be reproduced in full. Extracts or abridgements must not be published without permission from Warringtonfire.

All work and services carried out by Warringtonfire are subject to, and conducted in accordance with our standard terms and conditions. These are available on request or at https://www.element.com/terms/terms-and-conditions.